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Vortices
• Appear everywhere in nature

– whirlpools
– spiral galaxies
– combustion engines
– screw dislocations in crystals

• Are important in quantum
mechanics
– superfluids
– superconductors
– Bose-Einstein condensates

• Are important in visible-light optics
– diffraction free vortex beams
– vortex solitons
– holographically produced screw

dislocations

• Occur often in electron microscopy
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  What is a vortex?

• A discontinuity in the phase
of a wavefunction

• (r) = | (r)|ei (r)

• Wavefunction (r) is
continuous and single valued

• Probability density (intensity)
of the wavefunction, |  |2 is
continuous and single valued

• However, if |  |2 = 0, then
the phase is not well defined

• Thus phase can be
discontinuous or multivalued
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   Circulation of the
phase

• Phase is defined modulo 2π
• Circulation of the phase is not

necessarily zero
• ie

• Γ is closed path of loop integral

•     is unit vector tangential to the
path

• m is integer “topological charge”
• if m  0  there exists a vortex

with its core located inside the
path Γ
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• Phase behaviour about vortex
core with topological charge 1

• Note “spiral staircase” structure

• Vortex shown in greyscale map
of phase
– white corresponds to phase π
–  black corresponds to phase -π
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Theorem 1

• The same circulation will be
possessed by all loops Γ in
the parameter space r which
can be continuously
deformed into each other
without encountering any
zeros of the field.

x

y

Γ
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Theorem 2

• If a loop has nonzero
circulation, it must enclose a
point/region of zero intensity

• Hence vortices are
associated with zeros of
intensity

Γ
m  0

Region of
zero

intensity
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Theorem 3
• The region over which the

intensity is zero is either an
infinite line or a loop in the
parameter space r. 
This line or loop is a 

    Vortex Trajectory
• This is an immediate

consequence of Theorem 2 -
the path Γ cannot “unstring”
itself from the zero region
containing the trajectory.
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• Vortex trajectory C cuts plane at
points A and B, where counter-
propagating vortices exist in
plane.

• Path Γ cannot be removed from
trajectory loop, and has constant
circulation, regardless of its
location.

Example vortex
trajectory
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• The same vortex will have a
different direction of rotation
depending on the observer’s
vantage point.

• One trajectory may result in many
vortices being observed in a given
plane.

• They will have related charges
and directions of rotation

• Thus it is more useful to consider
the behaviour of vortex
trajectories rather than individual
vortices in a plane.
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• Compute wavefunction in 2D plane.

• Locate zeros of intensity.

• Compute circulation of phase
around zero intensity regions.

• If circulation clearly non-zero
(ie |m| >   ), designate zero point as
part of a vortex trajectory.

• Repeat this process for many
planes throughout parameter space.

Tracking vortex
trajectories

zeros m = 1m = 0

Intensity          Phase
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Calculated vortex
trajectory

Vortex trajectory for a model
wavefunction propagating in space

defocus

(x,y) plane
perpendicular to

direction of
propagation

View along
axis of

propagation
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Phase retrieval and
vortices

• The phase of a wavefunction is
important information

• It can’t be measured directly

• Non-interferometric methods
require multiple measurements,
usually in more than one plane

• Vortices may occur in one or
more planes of measurement

Initial
Wave

1st measurement
plane

2nd measurement
plane

Propagating
Wave
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• A vortex requires a region of zero
intensity to exist

• Phase retrieval methods which
assume intensity is non-zero
everywhere therefore assume
that there are no vortices.

• Such methods can’t retrieve
phase correctly when vortices are
present.

• This is a known problem with
methods such as those based on
flux continuity (solving the
Transport of Intensity Equation).

• We look for a method which
bypasses this problem.
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• General phase retrieval methods
must assume that
– intensity may be 

zero
– phase may be

discontinuous.

• Note that the wavefunction
remains continuous, even if
phase discontinuities exist.

• It makes sense to find a method
which deals with the entire
wavefunction.

• It does not make any particular
assumptions about phase
continuity.
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• We propose an iterative method
which uses a through focal
series of images as input.

• Images measured in 3 or more
planes are required.

• The algorithm is that suggested
by Saxton (1978) for two image
planes.

• Uniqueness issues are
discussed in:
L. J. Allen, H. M. L. Faulkner, K. A.

Nugent, M. P. Oxley and D.
Paganin, Phys Rev E, 63, 037602
(4 pages).
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Outline of algorithm

• Given initial measured
intensity in one plane, guess
the phase in that plane

• Computationally propagate
wavefunction to next plane.
Since wavefunction is
continuous, propagation
produces no problems.

• If new intensity is incorrect,
correct it and propagate
back, or forward to next
plane

• Error in calculated
wavefunction will decrease

• Repeat until propagated
intensity is correct
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Through Focal
Series Method

Computational 
propagation

Computational 
propagation

Plane 1

Plane 2

Plane 3

Known
intensity

1

Known
intensity

2

Known
intensity

3

Input
Guessed

phase

Output
correct
phase
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Data used

Image

Phase

-250Å
(-3.79mm)

Phase

-500Å
(-7.58mm)

-750Å
(-11.37mm)

Image

•  80keV electrons used with 75Å, image
size (equivalent to 1.14mm image for
6328Å  HeNe laser).
•  Initial image and phase are propagated
in space to give a through focal series in
3 planes.
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• Note that vortices exist in the
phase in every plane of TFS.

• Our aim is to
1) Find phase at each TFS plane
2) Propagate phased

wavefunction back to original
data plane, for comparision with
input images.
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Results

• Retrieved phase after 1500
iterations has sum squared
error of  3.046 x 10-11.

• Method has successfully coped
with vortices in the phases of
the through focal series.

Retrieved
results

Initial
data

Image Phase
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Results when image
data is noisy

≥ 10%  noise

SSE ≈ 3x10-3

≥ 30%  noise

SSE ≈ 2x10-2

≥ 20%  noise

SSE ≈ 1x10-2

Image Phase
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Conclusion

• Vortices are so common they
must be allowed for in many
phase retrieval situations.

• This requires allowing the phase
to be discontinuous, and the
intensity to be zero.

• The iterative retrieval method
accurately retrieves phase in the
presence of vortices.

• It is effective with noisy data and
numerically robust.

• It can include correction for known
microscope aberrations.

• It is applicable to a large number
of physical situations.


